Metabolomics of adherent mammalian cells by capillary electrophoresis-mass spectrometry: HT-29 cells as case study.

نویسندگان

  • Clara Ibáñez
  • Carolina Simó
  • Alberto Valdés
  • Luca Campone
  • Anna Lisa Piccinelli
  • Virginia García-Cañas
  • Alejandro Cifuentes
چکیده

In this work, the optimization of an effective protocol for cell metabolomics is described with special emphasis in the sample preparation and subsequent analysis of intracellular metabolites from adherent mammalian cells by capillary electrophoresis-mass spectrometry. As case study, colon cancer HT-29 cells, a human cell model to investigate colon cancer, are employed. The feasibility of the whole method for cell metabolomics is demonstrated via a fast and sensitive profiling of the intracellular metabolites HT-29 cells by capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF MS). The suitability of this methodology is further corroborated through the examination of the metabolic changes in the polyamines pathway produced in colon cancer HT-29 cells by difluoromethylornithine (DFMO), a known potent ornithine decarboxylase inhibitor. The selection of the optimum extraction conditions allowed a higher sample volume injection that led to an increase in CE-TOF MS sensitivity. Following a non-targeted metabolomics approach, 10 metabolites (namely, putrescine, ornithine, gamma-aminobutyric acid (GABA), oxidized and reduced glutathione, 5'-deoxy-5'-(methylthio)adenosine, N-acetylputrescine, cysteinyl-glycine, spermidine and an unknown compound) were found to be significantly altered by DFMO (p<0.05) in HT-29 cells. In addition to the effect of DFMO on polyamine metabolism, minor modifications of other metabolic pathways (e.g., related to intracellular thiol redox state) were observed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

"MS-Patch-Clamp"or the Possibility of Mass Spectrometry Hybridization with Patch-Clamp Setups for Single Cell Metabolomics and Channelomics

In this projecting work we propose a mass spectrometric patch-clamp equipment with the capillary performing both a local potential registration at the cell membrane and the analyte suction simultaneously. This paper provides a current literature analysis comparing the possibilities of the novel approach proposed with the known methods, such as scanning patch-clamp, scanning ion conductance micr...

متن کامل

Metabolomic analysis of the mechanism of isoflurane induced apoptosis of PC12 cells

Background: The neurotoxic effects of general anesthetics may adversely affect the developing brain of young animals. Given that levels of reactive oxygen species (ROS) increase in injured mitochondria, the induction of neurotoxicity is likely mediated by oxidative stress. To evaluate this possibility, we conducted metabolomic analyses to identify the metabolites involved in anesthetic-induced ...

متن کامل

Patch Clamp Electrophysiology and Capillary Electrophoresis–Mass Spectrometry Metabolomics for Single Cell Characterization

The visual selection of specific cells within an ex vivo brain slice, combined with whole-cell patch clamp recording and capillary electrophoresis (CE)-mass spectrometry (MS)-based metabolomics, yields high chemical information on the selected cells. By providing access to a cell's intracellular environment, the whole-cell patch clamp technique allows one to record the cell's physiological acti...

متن کامل

Mass spectrometry-based metabolomics

untargeted. Targeted metabolomics focuses on a subset of metabolites involved in one or more pathways; the chemical identities of metabolites to be measured are known, authentic standards are available in these studies. The goal of untargeted metabolomics is to observe global metabolite profiling differences between sample types, experiments are designed to maximise the coverage of metabolites....

متن کامل

Laser-micropipet combination for single-cell analysis.

Due to its potential for exquisite mass detection limits and resolving power, capillary electrophoresis is used for biochemical measurements on single cells; however, accurate measurements of many physiological parameters require sampling strategies that are considerably faster than those presently available. We have developed a laser-based technique to lyse single, adherent, mammalian cells on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of pharmaceutical and biomedical analysis

دوره 110  شماره 

صفحات  -

تاریخ انتشار 2015